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ABSTRACT

The effect of tangled magnetic fields has been included in a new study of full-amplitude models of
classical Cepheids. As compared with nonmagnetic models, the magnetic models have longer periods,
larger amplitudes, and earlier phases of the small secondary bump that appears on the velocity and
light curves. The induced changes of period and of bump phase yield better agreement with
observations if Cepheids have normal evolutionary masses. But the predicted amplitudes are larger
than those observed; moreover, the inferred value of the mean ratio of magnetic pressure to
thermodynamic pressure falls significantly below the value needed to explain the period ratios of the

double-mode Cepheids.

Subject headings: stars: Cepheids — stars: interiors — stars: magnetic

I. INTRODUCTION

Magnetic fields of tens to hundreds of gauss have been
detected in the atmospheres of several classical Cepheids
(Weiss, Dorfi, and Tscharnuter 1981; Borra, Fletcher,
and Poeckert 1981). These magnetic fields must extend
downward into the interior, where they could be rela-
tively strong and are perhaps fairly chaotic in arrange-
ment. Linear pulsational models of classical Cepheids
pervaded by small-scale and randomly oriented magnetic
fields reveal that the fundamental pulsation period II,
increases, while the period ratios I1, /Il, and II, /I,
decrease, as a result of the magnetic presence in the star
(Stothers 1979b). Since standard Cepheid models, with-
out magnetic fields, prove to have values of II, and
I1, /T1, that are too small and too large, respectively, to
account for the observed fundamental and first-overtone
periods (e.g., Cox 1980), strong magnetic fields may be
one way of providing the necessary agreement. Another
difficulty with the standard models is that they predict too
late a phase of the small secondary bump that appears on
the velocity and light curves of many observed Cepheids.
Simon and Schmidt (1976) have pointed out that the
predicted phase of this bump in standard nonlinear
models is closely correlated with the linear period ratio
I1, /I1,. If this correlation holds for magnetic as well as
nonmagnetic models, then the presence of strong mag-
netic fields may possibly lead to an explanation for the
anomalous phase of the bump in observed bump
Cepheids (Stothers 1979b).

The purpose of the present paper is to derive actual
nonlinear models of classical Cepheids pervaded by
well-tangled magnetic fields. These magnetic models turn
out, however, to be only partially successful in explaining
the observed properties of bump Cepheids, as will be
shown in § IV.
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II. ASSUMPTIONS

The physical and mathematical assumptions that will
be made for the magnetic field H are the same as those
described in a previous paper (Stothers 1979a). Briefly,
the magnetic field is assumed to be distributed in small,
randomly oriented flux tubes, whose hydrodynamical
effect is computed by evaluating the gradient of a pseudo-
isotropic pressure, ( H>)/24m, in the equation of motion,
where all quantities are assumed to be averaged over a
spherical shell. The magnetic field lines are regarded as
being thermodynamically locked into the gas during the
course of the pulsations, owing to the high electrical
conductivity of the ionized matter.

The necessary equations that contain the magnetic
field strength explicitly are

&r  GM() F CH?
s e aM—(r)(P 24n ) (1)
and
Y _4CH dp o

dt 3

where all the notation is conventional (Stothers 1979a).
The energy-conservation law for the star as a whole is

p dt’

L=| edM(r)—%(K+ W + Epmag) » (3)
with K = [ (32)PdV, W= — | GM(r)r~'dM(r), and
Epag=| (CH?*)>/87)dV. Only a small number of
modifications to the computer program described else-
where for nonmagnetic stars (Christy 1967; Vemury and
Stothers 1978) need to be made here. Observe that
equation (2) can be directly integrated, thus becoming
(H?Y/24n = Cp*"?, where C is a time constant for each
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mass shell. The run of C through the model is fixed once
and for all from the specified radial distribution of ( H?)
in the initial equilibrium model. The magnetic field is
assumed to permeate the entire pulsating envelope.

For compatibility with our previous linear work, we
assign in the equilibrium model a radial distribution of
(H*» that satisfies either (H?)/24rm = constant or
v = constant, where

v = (H2)/24nP . 4)

As in our previous work, we employ deep stellar en-
velopes, no convection, and two sets of opacities: (1)
Cox-Stewart opacities, in the analytic form given by
Christy (1966);and (2) Carson opacities (for temperatures
greater than log T = 3.85), in standard tabular form
(similar to the opacities in Carson, Stothers, and Vemury
1981). The (hydrogen, metals) abundance is taken to be
(X, Z) = (0.700, 0.020) for the first set of opacities and (X,
Z) = (0.739, 0.021) for the second set. The stellar models
have been followed in time until they reach limiting
amplitude (in the fundamental mode).

Notation adopted in the present paper includes: K.E.,
peak kinetic energy; A, full (not half) amplitude; Asym-
metry, time spent on the descending branch of the surface
velocity curve divided by time spent on the ascending
branch; ¢, phase after minimum radius of the second (but
not necessarily the secondary) bump on the surface
velocity curve plus unity; and Bump, location of the
secondary bump on the descending (D) or ascending (A)
branch of the surface velocity curve. The “surface ” of the
dynamical models is assumed to be the fixed mass layer
that, in the equilibrium model, lies at opticaldepth ~ 0.2.
Velocity is measured positively outward. Finally, the
period ratios IT, /I1, have been computed by using linear
nonadiabatic theory.

III. A MODEL WITH A UNIFORM MEAN MAGNETIC FIELD

The prototype bump Cepheid model studied by
Vemury and Stothers (1978) had M =7 My, log
(L/Le) = 3.7, log T, = 3.78, and I1, = 8.72 days, based
on the Carson opacities. This model has been recal-
culated here by introducing a uniform mean magnetic
field with (H?»!/2 = 300 gauss and then by following the
hydromagnetic oscillations of the star in time. Such a
magnetic field is very strong in the star’s atmosphere,
where the time-averaged ratio of magnetic pressure to
thermodynamic pressure is ~ 1 at optical depth 0.2 and
~ 0.6 at optical depth 0.7. However, the importance of
the magnetic field declines rapidly below the photo-
sphere. For this reason, the bulk pulsational properties of
the magnetic model resemble closely those for the non-
magnetic prototype.

One small difference is the magnetic field’s enhance-
ment of the pulsation amplitudes in the outer layers,
where the net effect of the magnetic stresses is to reduce
the local effective gravity; the surface velocity amplitude
of 103 km s~ ! should be compared with the nonmagnetic
model’s 93 km s~ !. A comparison of the magnetic and
nonmagnetic models is shown in Figure 1.
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F1G. 1.—Surface velocity curves for full-amplitude models with and

without a uniform mean magnetic field imposed on the initial equilib-
rium model.

With our present requirement that magnetic flux be
conserved at all layers, the variations of the magnetic field
strength follow precisely the variations of the mass
density, viz., (H2)1/? oc p2/3, Since the density varies by a
factor of ~ 10 at the surface, the magnetic field strength
varies there by a factor of ~ 5. Now the surface density
attains large maxima at two phases: (1) during the brief
episode of rising light, when the atmosphere has under-
gone collapse, but before an outward moving shock wave
heats the visible layers; and (2) about half a period after
the epoch of maximum light. Interestingly enough, the
observed strengths of the varying magnetic fields in two
classical Cepheids having periods of 7 days that were
studied by Weiss, Dorfi, and Tscharnuter (1981) exhibit
maxima at just about these phases. Weiss et al. have also
established observationally that the polarity of the mag-
netic field is not reversed during the pulsation cycle,
which also agrees with the present theory, although the
observed surface field, to be observable, must be more
coherent than we have assumed.

IV. THREE MODELS WITH NONUNIFORM MEAN
MAGNETIC FIELDS

In order to increase the importance of the magnetic
field in the deeper pulsating layers of our models, we have
calculated three additional models with a uniform value
of v = 0.5 applied to the initial equilibrium state. Results
for these three models are presented in Table 1 and in
Figure 2, where they are compared with results for their
nonmagnetic counterparts published in an earlier paper
(Vemury and Stothers 1978). For the purpose of easy
identification, these nonmagnetic models can be
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TABLE 1
FULL-AMPLITUDE PROPERTIES OF THE MODELS WITH AND WITHOUT NONUNIFORM MEAN
MAGNETIC FIELDS
COX-STEWART
OPACITIES CARSON OPACITIES

PARAMETER v=0 v=0.5 v=_0 v=20.5 v=0 v=205
M/Mg . ooooviiiiai, 4 4 7 7 7 7
log (L/Lg).covcvinnnnen.. 3.503 3.503 3.700 3.700 3.700 3.700
logT, coovvvveenieenn. 3.756 3.756 3.780 3.780 3.720 3.720
R/IRg covviviiiiiannnnn, 58.7 58.7 65.9 659 86.9 86.9
I, (days)..ccoovennnnn. 9.75 11.60 8.72 10.35 14.30 17.07
K.E. (10*? ergs) ......... 24 40 8.7 6.4 8.0 13.3
AR/R ..o, 0.19 042 0.19 0.30 022 0.35
Vo (kms™) oo, 28 58 45 56 37 44
Vio (kms™) ... -31 —-62 —48 —61 —43 -55
AV (kms™') ... 60 120 93 117 80 99
Loay (1037 ergss™1)..... 20 1.8 2.7* 24 3.1 2.8
Loin (1037 ergss™1!) ..... 0.79 0.31 0.86 0.61 0.65 0.45
AMupgp oo, 1.0 1.9 1.2* 1.5 1.7 2.0
Asymmetry .............. 45 33 41 24 1.5 9.0
[ 1.45 0.90 1.59 1.00 1.33 0.88
10 07 § O 0.531 0.461 0.543 0.481 0.505 0.444
Bump..........oooenin D A D A A D

* Corrected value (cf. Vemury and Stothers 1978).
LB T LI T T T T T T L} T T
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F1G. 2.—Surface velocity curves for full-amplitude models with and without a nonuniform mean magnetic field imposed on the initial equilibrium
model. Note the shift of the secondary bump of the velocity curve from one branch to the other when a strong magnetic field is introduced.

described as (1) the prototype bump Cepheid model
based on the Carson opacities, (2) a much cooler bump
Cepheid model based on the same opacities, and (3) the
prototype bump Cepheid model based on Cox-Stewart
opacities (the so-called Goddard model).

machine-generated version. For comparison, Figure 3
displays interior velocity curves for the new magnetic
counterpart model. The Christy “echo” phenomenon
that produces the secondary bump at the stellar surface
can be readily discerned in the magnetic model just as it

Interior velocity curves for the prototype bump
Cepheid model based on the Carson opacities were
published by Vemury and Stothers (1978) in a crude
hand-drawn form, but were later shown by Carson,
Stothers, and Vemury (1981) in a much-improved

can in the nonmagnetic model.

As could have been expected from the large reduction
of the effective gravities throughout the envelope, the
magnetic models have longer periods and larger ampli-
tudes than do the nonmagnetic models. But since the
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F1G. 3.—Velocity curves for the mass zones in a full-amplitude
model with a nonuniform mean magnetic field imposed on the initial
equilibrium model. The vertical scale is different for the various zones.

overtone periods are less affected by the magnetic field
than is the fundamental mode (Stothers 1979b),
the period ratios IT, /T1, decrease. Whether there is an
important physical link or not, the phases ¢ also show a
significant decrease, and therefore seem to obey the
“rule” proposed by Simon and Schmidt (1976). The
formal correlation between the two quantities is exhibited
in Figure 4, to which are added points for a large number
of previously published models not only of classical
Cepheids but also of type I Cepheids and RR Lyraestars
(Vemury and Stothers 1978; Carson, Stothers, and
Vemury 1981; Stothers 1981). (In some cases, unpub-
lished II,/II, and ¢ values have been supplied here.)
Observe that shifts in this diagram due to the imposition
of a magnetic field are qualitatively similar to the shifts
that arise from changes of stellar mass, radius, chemical
composition, and opacity.

Note, too, that models showing ¢ = 1.4-1.9 and
¢ < 0.9 have the secondary bump of the velocity curve
appearing on the descending branch, while models show-
ing ¢ =09-14 and ¢ > 1.9 (extrapolated value) have
this bump appearing on the ascending branch. The
crucial phase at which the bump crosses velocity
maximum—¢ = 1.4—corresponds to I1, /TIT, = 0.51 or,
alternatively, to Q, = 0.046 days, the correlation between

F1G. 4—Relation between the period ratio IT, /I, and the phase ¢
of the second bump on the surface velocity curve, for theoretical models
of nonmagnetic classical Cepheids (dots), type II Cepheids (squares), RR
Lyrae stars (triangles), and magnetic classical Cepheids (open circles).

I1, /TI, and Q, = IIo(M/M)'*(R/Ro)™3* being very
good (see, e.g., Fitch 1970). The crossing at velocity
minimum takes place both at ¢ = 0.9 and at ¢ = 1.9.
However, observationally significant bumps seem to
occur mainly inside the interval 0.9 < ¢ < 1.9. It would
seem, therefore, that linear calculations of the fundamen-
tal mode alone should be adequate in most cases to locate
the secondary bump of the velocity curve on the descend-
ing branch if Q, = 0.036-0.046 days or on the ascending
branch if Q, = 0.046-0.056 days.

The magnetic models can be used to generalize the (IT,,
M, R) and (I1,, ¢, R) relations derived by previous
authors for standard, nonmagnetic models. Since the
time-averaged march of v is fairly constant throughout
the magnetic models, the magnetic effects will arise
essentially through a factor 1 + v, according to equation
(1). Therefore we may formally set

I, = o1 + v)'(R/Ro)"*(M/M o)™ (5)
and

o = B(1 + v)'(R/Ro) , (6)

where a, B, y, and 6 are constants to be determined and
where we shall express I1, in days. For the Cox-Stewart
opacities, & ~ 0.022 and f§ = 0.25 (Stobie 1974) while, for
the Carson opacities, « ~ 0.025 and f =~ 0.22 (Vemury
and Stothers 1978). Independently of which set of opaci-
ties is adopted, the models including magnetic fields
indicate that y 0.4 and 6 ® —0.7. Combination of
equations (5) and (6) then yields

M/Mo ~e(l +v)2T ™", ™

where € 2 0.16 (Cox-Stewart opacities) or ¢ ~0.25
(Carson opacities).

The observed periods and bump phases of the bump
Cepheids average {I1,» = 8 days and {¢) = 1.6 (Fricke,
Stobie, and Strittmatter 1972), and their masses average
{M/M ) = 7 if a normal evolutionary mass-luminosity
relation is assumed (Fricke, Stobie, and Strittmatter
1972; Vemury and Stothers 1978). To satisfy equation (7)
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it is necessary to have v & 0.3 ifthe Cox-Stewart opacities
are used or v ® 0.1 ifthe Carson opacities are used. (Since
the most recent opacities available from the Los Alamos
Scientific Laboratory lie between the Cox-Stewart and
Carson values, a simple linear interpolation suggests that
v & 0.2 if these opacities are used.) Our present, direct
estimates of v supersede our earlier, somewhat larger
predicted values of v based on linear computations of
11, /T1, (Stothers 1979b).

A potential problem may arise for magnetic Cepheid
models based on these estimated values of v. The theoreti-
cal velocity amplitudes are, for both sets of opacities,
~ 100 km s~ !, whereas the observed velocity amplitudes,
after correction for geometrical projection and for limb
darkening, average ~ 60 km s~ ! (Ledoux and Walraven
1958). Although the model predictions are always worst
near the stellar surface, such a discrepancy seems quite
large.

V. CONCLUSION

If magnetic fields possessing small-scale chaotic struc-
ture are introduced into models of classical Cepheids, the
fundamental periods of the models become longer, their
amplitudes increase, and the secondary bumps on their
velocity and light curves are shifted to earlier phases.
Provided that real Cepheids have normal evolutionary
masses, the magnetically induced changes of period and
of bump phase ¢ certainly point in the direction of better
agreement between theory and observations. In fact,
exact agreement can be obtained if the average value of

CLASSICAL CEPHEIDS WITH MAGNETIC FIELDS 231

the magnetic strength parameter v is taken to be about 0.3
(using the models built with the Cox-Stewart opacities) or
about 0.1 (using the models built with the Carson
opacities).

On the other hand, significantly larger values of v, say
v =~ 0.8 (Stothers 1979b), seem to be required if we are to
account in a similar way for the puzzlingly low period
ratios IT;/TI, seen in double-mode Cepheids. Although
the range of fundamental periods observed for double-
mode Cepheids, I1, = 2-6 days, does not overlap the
range observed for bump Cepheids, I1, > 6 days, it is
hard to imagine such a large difference in magnetic field
strength separating the two groups of otherwise rather
similar Cepheids. An independent method of estimating
v exists and relies on empirical periods, radii, and masses
(through eq. [S]). But the results obtained in this way
(Stothers 1979b) must be regarded as highly provisional,
because the empirical radii are still quite uncertain; for
example, with the most recently published radii (Sollazzo
et al. 1981) v comes out to be effectively zero.

We believe that it may turn out to be possible to find
some distribution of interior mean magnetic field that
affects I, /I, relatively more than IT, or ¢. At the same
time, such a distribution ought to yield theoretical ampli-
tudes that are not larger than those actually observed,
which is not the case with the present models. If all these
observational requirements can be met in a self-
consistent way, then it may be possible to infer something
more definite about the global properties of the magnetic
fields inside classical Cepheids.
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